
The Formal Syntax and Semantics of Web-PDDL

Dejing Dou

Computer and Information Science
University of Oregon

Eugene, OR 97403, USA
dou@cs.uoregon.edu

Abstract. This white paper formally defines the syntax and semantics
of Web-PDDL, a strongly typed first order logic ontology language used
by OntoEngine [2, 1]. The ability to express XML namespaces makes
Web-PDDL well compatible with other web (ontology) languages, such as
RDF and OWL. The presence of types makes it possible to do meaningful
and efficient type checking during logic reasoning. The type equality
and multi inheritance make Web-PDDL more expressive for describing
semantic mapping rules between different ontologies.

1 Introduction

Web-PDDL is a strongly typed first order language with Lisp like syntax. The
ability to express namespaces with URIs and prefixes makes Web-PDDL well
compatible with other web languages. The presence of types makes it possible to
do meaningful type checking of Web-PDDL documents. The type equality and
multi inheritance make Web-PDDL more expressive for describing the relation-
ship of concepts from different ontologies in the Semantic Web model.

Web-PDDL can be used to represent ontologies, datasets and queries. Here
is an example, part of the yale bib ontology written in Web-PDDL:

(define (domain yale_bib-ont)

(:extends (uri "http://www.w3.org/2000/01/rdf-schema#" :prefix rdfs))

(:types Publication - Obj

Article Book Incollection Inproceedings - Publication

Literal - @rdfs:Literal)

(:predicates (author p - Publication a - Literal)

.....))

The :extends declaration expresses that this domain (i.e., ontology) is extended
from one or more other ontologies identified by the URIs. To avoid symbol
clashes, symbols imported from other ontologies are given prefixes, such as
@rdfs:Literal. These correspond to XML namespaces, and when Web-PDDL is
translated to RDF, that’s exactly what they become. Types start with capital
letters. A constant or variable is declared to be of a type T by writing “x - T”.

There was a formal definition for the syntax and less formally, the semantics
of PDDL in its manual [3]. PDDL is intended to describe planning domains and

problems. It can describe sets of actions an agent can take, and what their pre-
conditions and effects are. There is intense interest in development of notations
for describing web services, and Web-PDDL, which is extended from PDDL, is
ideal for that purpose [4]. Besides web services, Web-PDDL also can describe
other kinds of ontologies, datasets and queries on the Semantic Web model. This
dissertation defines the formal syntax and semantics of Web-PDDL in a general
way and describes its differences from PDDL.

2 The Syntax of Web-PDDL

In order to define the syntax of Web-PDDL, we first list the Symbols:

– Parentheses: (,).
– Negation: not.
– Binary Connectives: if, iff.
– n-ary Connectives: and, or.
– Types (Classes): t1, t2, t3 - T0...
– Type inheritance (subClassOf): - .
– Type Equal(sameClassAs): T->
– Quantifiers: forall, exists.
– Variables: x - t1, y - t2, z - t3...
– n-ary predicates (properties): (P a1 a2...an)
– n-ary functions: (f a1 a2...an) - t
– Constants: c1 - t1, c2 - t2, c3 - t3...
– Query variables: ?x - t1, ?y - t2, ?z - t3...
– Prefix expression for namespace: @ns1:, @ns2:, @ns3:...
– Comments: begin with a semicolon(“;”) and end with the next new line.

We use Web-PDDL mainly to describe ontologies, dataset and queries on
the Semantic Web. Before formally defining the syntax of ontology, dataset and
queries in Web-PDDL, we define the notation for the syntax definition. Our
notation is an BNF with following conventions.

– Each rule is of the form <syntactic element> ::= expansion.
– Angle brackets delimit names of syntactic elements.
– Square brackets surround optional material.
– A plus (+) means ”one or more of”.
– <typed list (symbol)> means that a list of symbols with type definition.

The symbol can be type, variable, query variable, constant, or function.

Then we can define the syntax of an Ontology in Web-PDDL:

<ontology> ::= (define (domain <local name>)
[<namespaces-def>]
[<extension-def>]
[<types-def>]
[<constants-def>]
[<predicates-def>]
[<functions-def>]
[<axioms-def>]
[<facts-def>])

<namespaces-def> ::= (:namespaces (:uri <URI> :prefix <prefix>)+)
<extension-def> ::= (:extends (:uri <URI> :prefix <prefix>)+)
<types-def> ::= (:types <typed list (type name)>)
<constants-def> ::= (:constants <typed list (constant name)>)

<predicates-def> ::= (:predicates <atomic formula skeleton>+)
<atomic formula skeleton> ::= (<predicate name> <typed list (variable)>)
<functions-def> ::= (:functions <typed list <function skeleton>)
<function skeleton> ::= (<function name> <typed list (variable)>)
<axioms-def> ::= (:axioms <axiom>+)
<facts-def> ::= (:facts <atomic formula>+)
<axiom> ::= (T-> <type> <type>)
<axiom> ::= (<quantifier> (<typed list (variable)>)

<formula>)
<formula> ::= <atomic formula>
<formula> ::= (not <formula>)
<formula> ::= (<n-ary connectives> <formula>+)
<formula> ::= (<binary connectives> <formula> <formula>)
<atomic formula> ::= (is <type> <term>)
<atomic formula> ::= (<predicate name> <term>+)
<term> ::= <string>
<term> ::= <number>
<term> ::= <variable>
<term> ::= <constant>
<term> ::= <function term>
<function term> ::= (<function name> <term>+)

The syntax of a Dataset in Web-PDDL is defined as:

<dataset> ::= (define (dataset <local name>)
<ontologies-def>
[<objects-def>]

<facts-def>)
<ontologies-def> ::= (:domain (:uri <URI> :prefix <prefix>)+)
<objects-def> ::= (:objects <typed list (constant name)>)
<facts-def> ::= (:facts <atomic formula>+)
<atomic formula> ::= (<predicate name> <term>+)
<term> ::= <string>
<term> ::= <number>
<term> ::= <constant>
<term> ::= <function term>
<function term> ::= (<function name> <term>+)

The syntax of a Query in Web-PDDL is defined as:

<query> ::= (define (query <local name>)
<ontologies-def>
[<objects-def>]
[<predicates-def>]
<query-def>
[<answer-def>])

<ontologies-def> ::= (:domain (:uri <URI> :prefix <prefix>)+)
<objects-def> ::= (:objects <typed list (constant name)>)
<predicates-def> ::= (:predicates <atomic formula skeleton>+)
<atomic formula skeleton> ::= (<predicate name> <typed list (variable)>)
<query-def> ::= (:query

(queryvars <typed list (query variable)>)
<query formula>)

<answer-def> ::= (:output
(queryvars <typed list (query variable)>)

<query formula>)
<query formula> ::= <atomic query formula>
<query formula> ::= (not <query formula>)
<query formula> ::= (<n-ary connectives> <query formula>+)
<atomic query formula> ::= (<predicate name> <term>+)
<term> ::= <string>
<term> ::= <number>
<term> ::= <query variable>
<term> ::= <constant>

Note, the syntax of Bridging Axiom (Semantic Mapping rules) in Web-PDDL
is same as the syntax of general Web-PDDL axioms. However, the types and
predicates in same bridging axiom may have different namespaces between they
may come from different ontologies. Readers can check [2] for more detail ex-

amples for bridging axioms. More bridging axioms with merged ontologies can
be found in OntoMerge web site1 and OntoGrate web site2.

The Changes of Syntax from PDDL

Web-PDDL is mainly designed for web applications. There are some changes of
syntax from PDDL:

1. We add namespaces in Web-PDDL to distinguish the symbols with same
name but from different ontologies or different data resources on the Web.
For example, both the yale bib and cmu bib ontologies have a class (type)
as Article. In Web-PDDL, we use @yale bib:Article and @cmu bib:Article to
represent these two types. To represent namespaces, the keywords about
URIs and prefixes are added into Web-PDDL.

2. With the help of namespaces, we can represent the types from different
ontologies in one Web-PDDL document. We may need to say two types are
same or equal. There is no any symbol in PDDL to express this “type-equal”
(sameClassAs) relationship. In Web-PDDL, we use “T->” to express it. For
example, (T-> @yale bib:Techreport @cmu bib:TechReport) means that the
Techreport type in the yale bib ontology is same as the TechReport type in
the cmu bib ontology. We can not use “=” for type-equal because a type in
Web-PDDL or PDDL is not an object.

3. Besides the built-in functions, such as +, -, ∗, and /, we can use Web-PDDL
to declare any other functions.

4. In Web-PDDL, we use a simpler and more flexible way to express axioms
than PDDL. For example, an axiom in blocks world is expressed in PDDL:

(:axiom

:vars (x y - physob)

:context (on x y)

:implies (above x y))

In Web-PDDL, it can be expressed like:

(forall (x y - physob)

(if (on x y) (above x y)))

5. In order to process queries, we use symbols with question mark, such as ?x,
to represent query variables in Web-PDDL. There is no query processing in
PDDL, both ?x and x are used for variables in PDDL.

3 The Semantics of Web-PDDL

Since Web-PDDL is a first order logic language, in order to define its semantics,
we must say what domain is involved for the quantifiers to quantify for. We must
1 http://aimlab.cs.uoregon.edu/ontomerge/ontoMerge.html
2 http://aimlab.cs.uoregon.edu/ontograte/ontoGrate.jsp

say how we are interpreting the constant, function and predicate with respect
to that domain, an interpretation. These two items specify a model. Since the
formulas may contain variables, we also need to give an assignment of values to
them when we try to define the truth and satisfaction of formulas. Therefore,
we formally define the semantics of Web-PDDL as following:

Definition 3.1 A model for the Web-PDDL is a pair M = 〈D ,I〉 where:
D is a set of sets related to types, called the domain of M.
D0 ∈ D s.t. D0 =

⋃
D .

I is a mapping, called an interpretation that associates expressions with:
I assigns to primitive type τ a set Dτ : τ I = Dτ .
ObjectI=DObject=D0 because Object is the built-in super type of all other

types in a domain.
To constant c, c of type τ1, cI ∈ Dτ1 .
To n-ary function f with result type τ0 and the arguments of types τ1, τ2...τn,

f I ⊆ <Dτ1 , Dτ2 ...Dτn , Dτ0>. Here, <Dτ1 ,Dτ2 ...Dτn , Dτ0> is a set of n+1-tuples
from the domain.

To n-ary predicate P, the arguments of types τ1, τ2...τn, P I ⊆<Dτ1 , Dτ2 ...Dτn>.
Definition 3.2 An assignment in a model M = 〈D ,I〉 is a mapping A from

the set of variables to the sets of D. For a variable v of type τ1, vA ∈ Dτ1 .
Definition 3.3 Let M = 〈D ,I〉 be a model for Web-PDDL, and let A be an

assignment in this model. To each term t (a constant, variable or function) of
Web-PDDL, we associate a value tI,A in the sets of D as follows:

1. For a constant symbol c, cI,A = cI.
2. For a variable symbol v, v I,A = vA.
3. For a function symbol f, (f t1 t2...tn)I,A = v, where v is the unique object

s.t. <t1I,A t2I,A...tnI,A, v> ∈ f I

Definition 3.4 Let x be a variable of type τ . The assignment B in the model
M is an x-variant of the assignment A, provided A and B assign the same values
to every variable except possibly x.

Definition 3.5 Let M = 〈D ,I〉 be a model for Web-PDDL, and let A be
an assignment in this model. To each formula Φ of Web-PDDL, we associate a
truth value ΦI,A (t or f) as follows:

1. For an atomic formula P :
(P a1 a2...a3)I,A = t ⇔ <a1

I,A a2
I,A...an

I,A> ∈ P I.
2. For the negation of a formula Φ, (not Φ)I,A = (not ΦI,A).
3. For the formulas connected by the connective conn:

(conn Φ1 Φ2...Φn)I,A = (conn Φ1
I,A Φ2

I,A...Φn
I,A).

4. (forall (x - t) Φ)I,A = t ⇔ ΦI,B = t for every assignment B in M that is an
x-variant of A.

5. (exists (x - t) Φ)I,A = t ⇔ ΦI,B = t for some assignment B in M that is an
x-variant of A.

Definition 3.6 A formula Φ of Web-PDDL is true in the model M= 〈D ,I〉
if ΦI,A = t for all assignments A. A formula Φ is valid if Φ is true in all models.

A set S of formulas is satisfiable in the model M= 〈D ,I〉, provided there is some
assignment A such that ΦI,A = t for all Φ ∈ S . S is satisfiable if it is satisfiable
in some model.

The Changes of Semantics from PDDL

The main changes of semantics from PDDL to Web-PDDL are related to its
type system:

1. In a model of PDDL, if we still define it as a pair M = 〈D ,I〉 where domain
D is a set of sets related to types. D0 ∈ D s.t. D0 =

⋃
D . The interpretation

I assigns to primitive type τ a set Dτ : τ I = Dτ .
In PDDL, any two types either are disjoint or have subsumption relationship:
if τ1 6= τ2, then Dτ1

⋂
Dτ2 = ø or Dτ1 ⊆ Dτ2 or Dτ2 ⊆ Dτ1 .

In Web-PDDL, there is no such constraint because we have to describe rela-
tionships of types from different ontologies on Web. Two types can be equal,
can be disjoint or can have subsumption relationship when we define them
in ontologies:
“(T-> τ1 τ2)” means Dτ1 = Dτ2 .
“τ1 - τ2” means Dτ1 ⊆ Dτ2 .
“τ1 τ2 - τ0” means Dτ1

⋂
Dτ2 = ø and Dτ1 ⊆ Dτ0 and Dτ2 ⊆ Dτ0 .

Otherwise, the relationship of two types is implicit.
2. In PDDL, one type only directly inherit from one super type. It is called

single inheritance. In Web-PDDL, one type can directly inherit from multiple
super types. It is called multi inheritance:
“τ1 - τ2” and “τ1 - τ3” mean that Dτ1 ⊆ Dτ2

⋂
Dτ3 .

References

1. OntoEngine Source Code.
http://projects.semwebcentral.org/projects/ontoengine/.

2. D. Dou, D. V. McDermott, and P. Qi. Ontology Translation on the Semantic Web.
Journal of Data Semantics, 2:35–57, 2005.

3. D. V. McDermott. The Planning Domain Definition Language Manual. Technical
Report 98-003, Department of Computer Science, Yale University, 1998.

4. D. V. McDermott and D. Dou. Representing Disjunction and Quantifiers in RDF.
In International Semantic Web Conference, pages 250–263, 2002.

